\$FMSO

Education AFM 113 Final Prep

Disclosure: This material is for educational purposes only and is intended to supplement course content. Please ensure you review the class materials independently.

ŜFmso

1.0 Simple Linear Regression	3
1.1 Linear Regression Manual Process	3
1.2 Linear Regression R Code	4
2.0 Probability Density Curve	4
2.1 Probability Density Curve Manual Process	4
2.11 General Normal Distribution	5
2.12 Standard Normal Distribution	5
2.2 Percentage Returns R Code	5
2.3 Beta Rolling Window R Code	5
2.4 Graph Generation R Code	6
2.3 Probability Calculation R Code	6
3.0 Normal Distribution	7
3.1 Normal Distribution Manual Process	7
3.11 IQR-to-SD ratio	7
3.12 Quantile-Quantile Normality Plot	7
3.2 Normal Distribution R Code	7
3.2 QQ Normality Plot R Code	8
4.0 Sample Probability Distribution	8
4.1 Sample Probability Distribution Manual Process	8
4.2 Sample Probability Distribution R Code	9
5.0 Confidence & Significance Levels	9
5.1 Confidence & Significance Levels Manual Testing	9
5.11 Known SD	10
5.12 Unknown SD	10
5.2 T-Statistic R Code	11
6.0 Hypothesis Testing	11
6.1 Hypothesis Testing Manual Process:	11

ŠFmso

1.0 Simple Linear Regression

1.1 Linear Regression Manual Process

Simple Linear Regression: Analysis only includes one independent variable and the relationship between the independent (X) and dependent (Y) variables is represented by a straight line.

Exact Model:

- $Y = \alpha + \beta X + \varepsilon$
 - *Alpha* (α) represents the intercept.
 - *Beta* (β) represents the coefficient of the independent variable (the slope).
 - *Epsilon* (ϵ) represents the random distances from the individual points to the best fitting line (residual terms).
- <u>Goal:</u> Identifying the best fit that will represent the relationship between X and Y in an equation as accurately as possible (measure the best line that fits the data).

Prediction Model:

•
$$\hat{\mathbf{Y}} = \alpha + \beta \mathbf{X}$$

- *Y-hat* (\hat{Y}) represents the predicted model dependent values.
- $\circ \quad Y = \hat{Y} + \epsilon$

Sum of Squared Residuals (Least Squares Method):

$$SSR = \sum_{i=1}^{N} (\alpha + \beta x_i - y_i)^2$$

Mean (µ):

$$\mu = \left(\sum_{i=1}^{N} x_{i}\right)/N$$

- -

Standard Deviation (σ):

$$\sigma = \sqrt{\frac{\sum_{i=1}^{N} (x_i - \mu)^2}{N}}$$

1.2 Linear Regression R Code

summary(lm(dependent_variablename ~ independent_variablename, dataset)) ^ Results will reveal the intercept (α) & the slope/coefficient (β).

2.0 Probability Density Curve

2.1 Probability Density Curve Manual Process

Probability Density Curve: Visualizes the probability distribution, allows us to see how probabilities are distributed over the values of a random variable.

Features of Density Curves:

- A density curve must lie on or above the horizontal axis.
- Area under the density curve (between curve & horizontal axis) must always equal 1 or 100%.
- Probability density will always be between 0 & 1 (area under the curve).
- <u>Probability density \neq probability.</u>
 - <u>Probability density</u> compares the likelihood of observing a value.
 - <u>Probability</u> compares the probability of the value falling in a range of observations.
- For a continuous variable (-∞ < x < ∞), discussing its probability of being a specific value is not meaningful because it always equals 0.

$$\circ \quad \Pr(\mathbf{x}=\#)=\mathbf{0}$$

Outliers: A data point that significantly deviates from the general pattern or average of the rest of the data points in a dataset.

- Mean > Median \Rightarrow Right-Skewed (upper)
- Mean < Median \Rightarrow Left-Skewed (lower)

2.11 General Normal Distribution

 $X \sim N(\mu, \sigma^2)$

The normal distribution is characterized by its mean (μ) and/or standard deviation (σ).

- Mean tells us where the center of the curve is.
- Standard deviation tells us how wide the curve is (will also determine the height of the curve).

2.12 Standard Normal Distribution

Z ~ N (0, 1)

Properties of the standard normal distribution (Z probabilities):

- If Pr(-n < Z < n), then = Pr(z < n) Pr(z < -n).
- If Pr(z < 0), then = Pr(z > 0) = 50%.
- If Pr(z > a), then = Pr(z < -a).
- If Pr(z > a), then = 1-Pr(z < a).

Standardization: Transforming a general normal distribution into the standard normal distribution.

• $Z = (X - \mu) / \sigma$

2.2 Percentage Returns R Code

```
Returns <- dataset %>% mutate(dependent_returns = (dependentvariablename -
lag(dependentvariablename)) / lag(dependentvariablename), independent_returns
= (independentvariablename - lag(independentvariablename)) /
lag(independentvariablename)) %>% na.omit()
```

^ Results will give the percentage returns of the variables.

^ lag() ← Captures end-of-previous month prices.

2.3 Beta Rolling Window R Code

```
rollBeta <- data.frame(WindowEndMonth = as.Date(character()), beta =
numeric(), stringsAsFactors = FALSE)
for(i in 1:(nrow(dataset) - #-1)) {
subset_df <- dataset[i:(i+#-1), ]
subset_beta <-lm(dependent_variablename ~ independent_variablename,
subset_df)
beta_coef <- coef(subset_beta)["independent_variablename"]
rollBeta <- rbind(rollBeta, data.frame(WindowEndMonth =
subset_df$datevariablename[#],
beta = beta_coef, row.names=NULL)) }</pre>
```


^ Identifies an estimated beta value for a dependent variable using a rolling window cycle (automatic rolling window on $R \rightarrow$ line 2&3, remove line 2&3 for manual).

2.4 Graph Generation R Code

```
binwidth <- (max(dataset$variablename) - min(dataset$variablename))/#ofbins
bin_edges <-</pre>
```

seq(min(dataset\$variablename),max(dataset\$variablename),binwidth)

^ Determine the cutoff values for histogram bins manually (display range of returns for each bin).

```
Ggplot(dataset, aes(x = variablename, y =..density..)) + geom_point() +
geom_smooth(method = "lm", se = False) + geom_histogram(breaks = bin_edges,
fill = "color", alpha = #) + geom_line() + geom_density(color = "color", size
= #) + geom_qq() + geom_vline(xintercept = #, linetype = "type") +
geom_abline() + scale_axis_continuous(labels = scales::percent) + labs(title
= "title", x= "dependent_variablename", y = "independent_variablename") +
theme(plot.title = element_text(hjust = #), axis.text/title.axis =
element_text(angle = #)
```

^ geom_point() \leftarrow scatterplot, geom_smooth() \leftarrow smooth line, geom_histogram() \leftarrow histogram, geom_line() \leftarrow time-series plot, geom_density() \leftarrow probability density curve, geom_qq() \leftarrow quantile-quantile plot, geom_vline() \leftarrow vertical line, geom_abline() \leftarrow reference line (intercept = 0, slope = 1).

^ scale_axis_continuous() \leftarrow Specifies which axis to scale continuously.

```
^ theme_classic() \leftarrow no grid lines, theme_bw() \leftarrow grey grid lines, theme() \leftarrow Customized looks.
^ se = False \leftarrow without the confidence interval, ...density... \leftarrow scale y-axis from frequency to
probability density, scales::percent \leftarrow Label the scales in percentage.
```

2.3 Probability Calculation R Code

```
pnorm(x_value, mean = #, sd = #)
```

^ Results will identify the probability at x-value (z value, mean = 0, sd = 1).

 $^{\rm o}$ dnorm() \leftarrow gives probability density, qnorm() \leftarrow finds quartile/percentile.

⑤Fmso

3.0 Normal Distribution

3.1 Normal Distribution Manual Process

If a dataset follows standard normal distribution, then Pr(-1 < Z < 1) determines "the percentage of observation [that] lies within one standard deviation of the mean."

^ mean (μ) + standard deviation (σ) = 0+1 = 1, mean (μ) - standard deviation (σ) = 0-1 = -1

- 68% of the data lies within one standard deviation of the mean.
- 95% of the data lies within two standard deviations of the mean.
- 99% of the data lies within three standard deviations of the mean.

3.11 IQR-to-SD ratio

IQR / SD ≈ 1.34

^ No fixed universally applicable ratio (only testing through one method is not enough to identify if a dataset follows a standard normal distribution or not).

3.12 Quantile-Quantile Normality Plot

Pr(Y < y1) = Pr(X < x1) = Pr(Z < z1) = 1/(n+1)

^ Find the probability of the z-score using 1/(n+1) then use standardization to find the x value.

The x values should be very similar with the y values (thus should have a 45° straight line to be a normal distribution).

3.2 Normal Distribution R Code

dataset %>% mutate(range1 = if_else(variablename <= mean(variablename) + sd(variablename) & variablename >= mean(variablename) - sd(variablename),1,0), range2 = if_else(variablename <= mean(variablename) + 2*sd(variablename) & variablename >= mean(variablename) - 2*sd(variablename),1,0), range3 = if_else(variablename <= mean(variablename) + 3*sd(variablename) & variablename >= mean(variablename) - 3*sd(variablename),1,0)) ^ Results will identify the ranges of standard deviations from the mean.

dataset %>% summarize(pct_range1 = mean(range1), pct_range2 = mean(range2), pct_range3 = mean(range3))

^ Finds the number of observations that fall within the mean of the ranges.

AFM 113

⑤Fmso

3.2 QQ Normality Plot R Code

dataset <- dataset %>% mutate(rank = rank(variablename), percentile =
rank/(nrow(dataset)+1), stdnorm = qnorm(percentile))
QQ plot (x=stdnorm, y = (variablename - mean(variablename)/sd(variablename)))
^ Allows you to create a QQ plot for any distribution.

ggplot(dataset, aes(sample = variablename)) + geom_qq() + geom_qq_line(colour = "colour", linewidth = #) + labs(x = "Theoretical Returns", y = "Sample Returns") ^ Direct QQ plot for sample.

4.0 Sample Probability Distribution4.1 Sample Probability Distribution Manual Process

Sample Distribution: Inferring the unknown population mean based on the known sample mean.

Standard Error: Standard deviation of the sample (about 10 times smaller than the population standard deviation).

• <u>The more samples we have, the smaller the difference between the sample mean and population mean.</u>

$$\bar{x} \sim \mathcal{N}(\mu_{\bar{x}}, \sigma_{\bar{x}}^2)$$

The mean of the sample means equals to the population mean:

$$\mu_{\overline{x}} = \mu$$

The standard error equals the population's standard deviation divided by the square root of the sample size:

$$\sigma_{\overline{x}} = \frac{\sigma}{\sqrt{n}}$$

Central Limit Theorem (CLT): By satisfying the following three conditions, the samples will follow a normal distribution, even if the population does not (z-score can be used):

- We must always be able to draw out multiple samples out of the population.
- We must know the mean and standard deviation of the population,
- The sample size must be sufficiently large (greater than or equal to 30 observations), if it is not a normally distributed population.

4.2 Sample Probability Distribution R Code

```
set.seed(#)
sampleset <- dataset %>% slice_sample(n = #)
^ Seed value can be any value (links the value to a fixed set of sample observations).
```

```
dataset <- data.frame(variablename = numeric())
for (i in 1:10) {
  set.seed(i)
  sample <- dataset %>% slice_sample (n = #)
  temp_var <- mean(sample$variablename)
  mvar <- rbind(mvar, data.frame(avg_var = temp_var, row.names = NULL))}
^ Results allows for estimation of the variable's average variability (taking random samples &
  finding the mean of each, compiling it all together to compare).</pre>
```

5.0 Confidence & Significance Levels5.1 Confidence & Significance Levels Manual Testing

<u>Sample Standard Deviation</u>: Where s = sample standard deviation, n = # of observations, and \bar{x} = sample mean.

$$s = \sqrt{\frac{\sum\limits_{i=1}^{n} (x_i - \bar{x})^2}{n-1}}$$

Point Estimator: Claim of a specific, singular point.

Interval Estimator: Claim of a range that a point may fall into (more confident).

The confidence interval (CI) for an unknown population mean can be written as:

$$\bar{X} - \mathsf{MoE} \leq \mu \leq \bar{X} + \mathsf{MoE}$$

Margin of Error (MoE): Considered a buffer zone.

• MoE = Critical Value * Standard Error

Standard Error: Population (or sample) Standard Deviation / Sqrt of # of Observations

$$SE = \frac{\sigma (or s)}{\sqrt{n}}$$

Critical Value = $Z_{\frac{\alpha}{2}}$

Confidence Level: Measures how confident we are that the calculated interval contains the true (but unobservable) population mean.

- Most Common Confidence Level: 90% / 95% / 99%.
 - \circ e.g., Pr() = 95%
- The greater the confidence level is, the wider the confidence interval is.

5.11 Known SD

Scenario 1: σ is known, confidence level is 95%.

- $\Pr(\bar{x}L < \bar{x} < \bar{x}U) = 95\% (1 \alpha)$
- This means the left over = 5% (α), 2.5% on each side (α /2) \leftarrow two-tailed.
- That means $Pr(\bar{x} < \bar{x}L) = 2.5\%$
- Standardization of sample to standard: $Z = (\bar{x} \mu) / (\sigma / \sqrt{n})$
- Generally: Pr($-Z \alpha/2 < Z < Z \alpha/2$)
- Therefore when σ is known: $\bar{x} Z \alpha/2 * (\sigma / \sqrt{n}) \le \mu \le \bar{x} + Z \alpha/2 * (\sigma / \sqrt{n}) = 1 \alpha$

5.12 Unknown SD

Scenario 2: σ is UNKNOWN, confidence level is still 95%.

• Replace the population sd with the sample sd (s).

$$t = \frac{\bar{X} - \mu}{s/\sqrt{n}}$$

- This will no longer give a standard normal distribution (*Z*). As a result, we use the t-distribution or t-score (t-distribution has fatter tails than the normal distribution).
- By increasing more of the observations, the t-distribution will become more and more like the standard normal distribution.

$$\bar{X} - \frac{t_{\alpha/2}}{\sqrt{n}} \left(\frac{s}{\sqrt{n}} \right) \le \mu \le \bar{X} + \frac{t_{\alpha/2}}{\sqrt{n}} \left(\frac{s}{\sqrt{n}} \right)$$

^ Replaced all of Z with t & all of σ with s.

5.2 T-Statistic R Code

```
mu <- mean(variablename)
sigma <- sd(variablename)
margin_error <- t_value * (sigma / sqrt(sample_size))
ci_lower <- mu - margin_error
ci_upper <- mu + margin_error
^ Finds the MoE and confidence interval of the sample.</pre>
```

6.0 Hypothesis Testing

6.1 Hypothesis Testing Manual Process:

- Null Hypothesis: What we are testing.
- Alternative Hypothesis: Anything but the null hypothesis.
- As words:
 - Null Hypothesis: The mean is equal to ____.
 - Alternative Hypothesis: The alternative hypothesis is not ___(null hypothesis).
- As symbols:
 - $H_0: \mu =$ ____
 - $H_a: \mu \neq _$
- NOTE: The null hypothesis can NOT be an inequality.
- Rejection region:
 - $\circ \quad \text{SD known: } Z < \textbf{-} z_{\alpha/2} \text{ or } Z \textbf{>} z_{\alpha/2}$
 - $\circ \quad \text{SD unknown: } t < \textbf{-}t_{\alpha/2} \text{ or } t {>} t_{\alpha/2}$

Two-Tailed Test:

- Alternative hypothesis is <u>non-directional</u>, solely rejecting the null hypothesis.
 - $\circ \quad e.g.,\,H_a:\mu\neq\mu_0$
 - Rejection region is equally split between both tails of the distribution (each area accounts for $\alpha/2$).

One-Tailed Test:

- Alternative hypothesis is <u>directional</u>, in which the entire rejection region (α) will be at one tail of the distribution (lower or upper).
 - $\circ \quad e.g., \, H_a: \mu < \mu_0 \; (H_a = \mu > \mu_0)$
 - Only one critical value is needed.
 - $Pr(t < t^*) = \alpha$
 - Depending on the H_a, the p-value probability sign will follow the same way.

P value: Calculating critical value(s) and the area beyond them to determine if H_0 is rejected. R Code: Calculating rejection range using P value, which can be done by:

xbar <- 173.02 mu0 <- 175 s <- 10.95 n <- 162

```
# Calculate t-statistic
t_stat <- (xbar-mu0)/(s/sqrt(n))</pre>
```

```
# Determine p-value
area_lower <- pt(t_stat, df = n-1)
area_upper <- 1- pt(-t_stat, df = n-1)</pre>
```

#return rejection region
area_lower+area_upper

Element	One-Sample	Two-Sample
Population Parameter	μ	$\mu_1-\mu_2$
Sample Statistic	\bar{X}	$ar{X_1}-ar{X_2}$
Standard Error	$rac{\sigma}{\sqrt{n}}$ or $rac{s}{\sqrt{n}}$	$\sqrt{rac{\sigma_1^2}{n_1}+rac{\sigma_2^2}{n_2}}$ or $\sqrt{rac{s_1^2}{n_1}+rac{s_2^2}{n_2}}$
Degree of Freedom	n-1	$\frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{\frac{1}{n_1 - 1}\left(\frac{s_1^2}{n_1}\right)^2 + \frac{1}{n_2 - 1}\left(\frac{s_2^2}{n_2}\right)^2}$