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1.0 Simple Linear Regression 
1.1 Linear Regression Manual Process 
Simple Linear Regression: Analysis only includes one independent variable and the 
relationship between the independent (X) and dependent (Y) variables is represented by a 
straight line. 
 
Exact Model: 

● Y = α + βX + ε  
○ Alpha (α) represents the intercept. 
○ Beta (β) represents the coefficient of the independent variable (the slope). 
○ Epsilon (ε) represents the random distances from the individual points to the 

best fitting line (residual terms).   
● Goal: Identifying the best fit that will represent the relationship between X and Y in 

an equation as accurately as possible (measure the best line that fits the data).  
 
Prediction Model: 

● Ŷ = α + βX  
○ Y-hat (Ŷ) represents the predicted model dependent values. 
○ Y = Ŷ + ε  

 
Sum of Squared Residuals (Least Squares Method):  

 
 
Mean (μ): 

    µ =  (
𝑖 =1

𝑁

∑ 𝑥
𝑖
)/𝑁
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Standard Deviation (𝜎): 

 
 
1.2 Linear Regression R Code  
summary(lm(dependent_variablename ~ independent_variablename, dataset)) 
^ Results will reveal the intercept (α) & the slope/coefficient (β). 
 

2.0 Probability Density Curve 
2.1 Probability Density Curve Manual Process 
Probability Density Curve: Visualizes the probability distribution, allows us to see how 
probabilities are distributed over the values of a random variable. 
 
Features of Density Curves: 

● A density curve must lie on or above the horizontal axis. 
● Area under the density curve (between curve & horizontal axis) must always equal 1 or 

100%. 
● Probability density will always be between 0 & 1 (area under the curve). 
● Probability density ≠ probability. 

○ Probability density compares the likelihood of observing a value. 
○ Probability compares the probability of the value falling in a range of 

observations. 
● For a continuous variable (- ∞ < x < ∞), discussing its probability of being a specific 

value is not meaningful because it always equals 0. 
○ Pr(x = #) = 0 

 
Outliers: A data point that significantly deviates from the general pattern or average of the rest 
of the data points in a dataset. 

● Mean > Median ⇒ Right-Skewed (upper)  
● Mean < Median ⇒ Left-Skewed (lower) 

 

4 



AFM 113 

2.11 General Normal Distribution 

X ∼ N (μ, σ2)  
The normal distribution is characterized by its mean (μ) and/or standard deviation (σ). 

○ Mean tells us where the center of the curve is. 
○ Standard deviation tells us how wide the curve is (will also determine the height of 

the curve). 
 
2.12 Standard Normal Distribution 
Z ∼ N (0, 1)  
Properties of the standard normal distribution (Z probabilities): 

● If Pr (-n < Z < n), then = Pr (z < n) -Pr (z < -n). 
● If Pr (z < 0), then = Pr (z > 0) = 50%. 
● If Pr (z > a), then = Pr (z < -a). 
● If Pr (z > a), then = 1-Pr (z < a). 

 
Standardization: Transforming a general normal distribution into the standard normal 
distribution. 

● Z = (X − μ) / σ 
 
2.2 Percentage Returns R Code 
Returns <- dataset %>% mutate(dependent_returns = (dependentvariablename - 
lag(dependentvariablename)) / lag(dependentvariablename), independent_returns 
= (independentvariablename - lag(independentvariablename)) / 
lag(independentvariablename)) %>% na.omit()     
^ Results will give the percentage returns of the variables.    
^ lag() ← Captures end-of-previous month prices. 
 
2.3 Beta Rolling Window R Code 
rollBeta <- data.frame(WindowEndMonth = as.Date(character()), beta = 
numeric(), stringsAsFactors = FALSE) 
for(i in 1:(nrow(dataset) - #-1)) { 
subset_df <- dataset[i:(i+#-1), ] 
subset_beta <-lm(dependent_variablename ~ independent_variablename, 
subset_df)   
beta_coef <- coef(subset_beta)["independent_variablename"] 
rollBeta <- rbind(rollBeta, data.frame(WindowEndMonth = 
subset_df$datevariablename[#], 
beta = beta_coef, row.names=NULL)) } 
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^ Identifies an estimated beta value for a dependent variable using a rolling window cycle 
(automatic rolling window on R → line 2&3, remove line 2&3 for manual). 
 
2.4 Graph Generation R Code 
binwidth <- (max(dataset$variablename) - min(dataset$variablename))/#ofbins 
bin_edges <- 
seq(min(dataset$variablename),max(dataset$variablename),binwidth)  
^ Determine the cutoff values for histogram bins manually (display range of returns for each 
bin). 
 
Ggplot(dataset, aes(x = variablename, y =..density..)) + geom_point() + 
geom_smooth(method = “lm”, se = False) + geom_histogram(breaks = bin_edges, 
fill = “color”, alpha = #) + geom_line() + geom_density(color = “color”, size 
= #) + geom_qq() + geom_vline(xintercept = #, linetype = "type") + 
geom_abline() + scale_axis_continuous(labels = scales::percent) + labs(title 
= “title”, x= “dependent_variablename”, y = “independent_variablename”) + 
theme(plot.title = element_text(hjust = #), axis.text/title.axis = 
element_text(angle = #) 
^ geom_point() ← scatterplot, geom_smooth() ← smooth line, geom_histogram() ← histogram, 
geom_line() ← time-series plot, geom_density() ← probability density curve, geom_qq() ← 
quantile-quantile plot, geom_vline() ← vertical line, geom_abline() ← reference line (intercept = 
0, slope = 1). 
^ scale_axis_continuous() ← Specifies which axis to scale continuously. 
^ theme_classic() ← no grid lines, theme_bw() ← grey grid lines, theme() ← Customized looks. 
^ se = False ← without the confidence interval, ..density.. ← scale y-axis from frequency to 
probability density, scales::percent ← Label the scales in percentage. 
 

2.3 Probability Calculation R Code 
pnorm(x_value, mean = #, sd = #)  
^ Results will identify the probability at x-value (z value, mean = 0, sd = 1). 
^ dnorm() ← gives probability density, qnorm() ← finds quartile/percentile. 
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3.0 Normal Distribution 

3.1 Normal Distribution Manual Process 
If a dataset follows standard normal distribution, then Pr(−1 < Z < 1) determines “the percentage 
of observation [that] lies within one standard deviation of the mean.”  
^ mean (µ) + standard deviation (σ) = 0+1 = 1, mean (µ) - standard deviation (σ) = 0-1 = -1  

● 68% of the data lies within one standard deviation of the mean. 
● 95% of the data lies within two standard deviations of the mean.  
● 99% of the data lies within three standard deviations of the mean.  

 
3.11 IQR-to-SD ratio 
IQR / SD ≈ 1.34 
^ No fixed universally applicable ratio (only testing through one method is not enough to identify 
if a dataset follows a standard normal distribution or not). 
 
3.12 Quantile-Quantile Normality Plot  
Pr(Y < y1) = Pr(X < x1) = Pr(Z < z1) = 1/(n+1) 
^ Find the probability of the z-score using 1/(n+1) then use standardization to find the x value. 
 
The x values should be very similar with the y values (thus should have a 45° straight line to be a 
normal distribution). 
 
3.2 Normal Distribution R Code                                             
dataset %>% mutate( 
range1 = if_else(variablename <= mean(variablename) + sd(variablename) & 
variablename >= mean(variablename) - sd(variablename),1,0),  
range2 = if_else(variablename <= mean(variablename) + 2*sd(variablename) & 
variablename >= mean(variablename) - 2*sd(variablename),1,0),  
range3 = if_else(variablename <= mean(variablename) + 3*sd(variablename) & 
variablename >= mean(variablename) - 3*sd(variablename),1,0)) 
^ Results will identify the ranges of standard deviations from the mean. 
 
dataset %>% summarize(pct_range1 = mean(range1), pct_range2 = mean(range2), 
pct_range3 = mean(range3)) 
^ Finds the number of observations that fall within the mean of the ranges. 
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3.2 QQ Normality Plot R Code  
dataset <- dataset %>% mutate(rank = rank(variablename), percentile = 
rank/(nrow(dataset)+1), stdnorm = qnorm(percentile))  
QQ plot (x=stdnorm, y = (variablename - mean(variablename)/sd(variablename))) 
^ Allows you to create a QQ plot for any distribution. 
 
ggplot(dataset, aes(sample = variablename)) + geom_qq() + geom_qq_line(colour 
= "colour", linewidth = #) + labs(x = "Theoretical Returns", y = "Sample 
Returns") 
^ Direct QQ plot for sample. 
 

4.0 Sample Probability Distribution 
4.1 Sample Probability Distribution Manual Process  
Sample Distribution: Inferring the unknown population mean based on the known sample 
mean. 
 
Standard Error: Standard deviation of the sample (about 10 times smaller than the population 
standard deviation). 

● The more samples we have, the smaller the difference between the sample mean and 
population mean. 

 
The mean of the sample means equals to the population mean:  

 µ
𝑥

= µ
 
The standard error equals the population’s standard deviation divided by the square root of the 
sample size: 

 σ
𝑥

= σ
𝑛

 
 

8 



AFM 113 

Central Limit Theorem (CLT): By satisfying the following three conditions, the samples will 
follow a normal distribution, even if the population does not (z-score can be used): 

● We must always be able to draw out multiple samples out of the population. 
● We must know the mean and standard deviation of the population,  
● The sample size must be sufficiently large (greater than or equal to 30 observations), if it 

is not a normally distributed population. 
 
4.2 Sample Probability Distribution R Code 
set.seed(#)  
sampleset <- dataset %>% slice_sample(n = #)  
^ Seed value can be any value (links the value to a fixed set of sample observations). 
 
dataset <- data.frame(variablename = numeric())  
for (i in 1:10) {   
set.seed(i)  
sample <- dataset %>% slice_sample (n = #)  
temp_var <- mean(sample$variablename)  
mvar <- rbind(mvar, data.frame(avg_var = temp_var, row.names = NULL))} 
^ Results allows for estimation of the variable’s average variability (taking random samples & 
finding the mean of each, compiling it all together to compare). 

 
5.0 Confidence & Significance Levels 
5.1 Confidence & Significance Levels Manual Testing 
Sample Standard Deviation: Where s = sample standard deviation, n = # of observations, and x̄ = 
sample mean. 
 

 
 
Point Estimator: Claim of a specific, singular point. 
Interval Estimator: Claim of a range that a point may fall into (more confident). 
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The confidence interval (CI) for an unknown population mean can be written as:  

   
 
Margin of Error (MoE): Considered a buffer zone. 

● MoE = Critical Value * Standard Error   
 
Standard Error: Population (or sample) Standard Deviation / Sqrt of # of Observations  

 𝑆𝐸 = σ (𝑜𝑟 𝑠)
𝑛

 

Critical Value =  𝑍 α
2

 
Confidence Level: Measures how confident we are that the calculated interval contains the true 
(but unobservable) population mean. 

● Most Common Confidence Level: 90% / 95% / 99%. 
○ e.g., Pr( ) = 95%  

● The greater the confidence level is, the wider the confidence interval is. 
 
5.11 Known SD 
Scenario 1: σ is known, confidence level is 95%. 

● Pr( x̄L < x̄ < x̄U) = 95% (1 - α)  
● This means the left over = 5% (α), 2.5% on each side (α/2) ← two-tailed. 
● That means Pr( x̄ < x̄L ) = 2.5%   
● Standardization of sample to standard: Z = (x̄ - μ) / (σ / √n)   
● Generally: Pr( -Z α/2 < Z < Z α/2)  
● Therefore when σ is known: x̄ - Z α/2 * (σ / √n) ≤ µ ≤ x̄ + Z α/2 * (σ / √n) = 1 - α  

 
5.12 Unknown SD 
Scenario 2: σ is UNKNOWN, confidence level is still 95%.  

● Replace the population sd with the sample sd (s). 
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● This will no longer give a standard normal distribution (Z). As a result, we use the 
t-distribution or t-score (t-distribution has fatter tails than the normal distribution). 

● By increasing more of the observations, the t-distribution will become more and more 
like the standard normal distribution. 

 
^ Replaced all of Z with t & all of σ with s. 
 
5.2 T-Statistic R Code 
sample_size <- # 
alpha <- # 
confidence_level = 1-alpha 
t-value <- qt(confidence_level,df= sample_size - 1) 
^ Identifies the quantiles for t-distribution. 
^ Use qnorm() to find z-scores ← check: see 2.3 Probability Calculation R Code. 
 
mu <- mean(variablename) 
sigma <- sd(variablename) 
margin_error <- t_value * (sigma / sqrt(sample_size)) 
ci_lower <- mu - margin_error 
ci_upper <- mu + margin_error 
^ Finds the MoE and confidence interval of the sample. 
 

6.0 Hypothesis Testing 
6.1 Hypothesis Testing Manual Process: 

● Null Hypothesis: What we are testing. 
● Alternative Hypothesis: Anything but the null hypothesis. 
● As words:  

○ Null Hypothesis: The mean is equal to ___. 
○ Alternative Hypothesis: The alternative hypothesis is not ___(null hypothesis). 

● As symbols:  
○ H0: μ = ___ 
○ Ha: μ ≠ ___ 

● NOTE: The null hypothesis can NOT be an inequality. 
● Rejection region: 

○ SD known: Z < -zα/2 or Z>zα/2 

○ SD unknown: t < -tα/2 or t>tα/2 
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Two-Tailed Test:  
● Alternative hypothesis is non-directional, solely rejecting the null hypothesis. 

○ e.g., Ha : μ ≠ μ0  
○ Rejection region is equally split between both tails of the distribution (each 

area accounts for α/2). 
 
One-Tailed Test: 

● Alternative hypothesis is directional, in which the entire rejection region (α) will be at 
one tail of the distribution (lower or upper).   

○ e.g., Ha : μ < μ0 (Ha = μ > μ0)  
■ Only one critical value is needed.  
■ Pr( t < t*) = α  
■ Depending on the Ha, the p-value probability sign will follow the same 

way. 
 
P value: Calculating critical value(s) and the area beyond them to determine if H0 is rejected. 
R Code: Calculating rejection range using P value, which can be done by:  
xbar <- 173.02 
mu0 <- 175 
s <- 10.95 
n <- 162 
 
# Calculate t-statistic 
t_stat <- (xbar-mu0)/(s/sqrt(n)) 
 
# Determine p-value 
area_lower <- pt(t_stat, df = n-1) 
area_upper <- 1- pt(-t_stat, df = n-1) 
 
#return rejection region 
area_lower+area_upper 
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