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1.0 Simple Linear Regression

1.1 Linear Regression Manual Process
Simple Linear Regression: Analysis only includes one independent variable and the
relationship between the independent (X) and dependent (Y) variables is represented by a

straight line.

Exact Model:

o Y=0+pX+e
o Alpha (o) represents the intercept.
o Beta (P) represents the coefficient of the independent variable (the slope).
o Epsilon (¢) represents the random distances from the individual points to the

best fitting line (residual terms).
e Goal: Identifying the best fit that will represent the relationship between X and Y in
an equation as accurately as possible (measure the best line that fits the data).

Prediction Model:
o Y=0+BX
o Y-hat (Y) represents the predicted model dependent values.
o Y=Y+¢

Sum of Squared Residuals (Least Squares Method):

N
SSR="Y) (a+ Bz —y)°
1=1

N
w= (X x)/N
i=1
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Standard Deviation (0):

; = \/ S (i = )2

N

1.2 Linear Regression R Code
summary (1m(dependent_variablename ~ independent_variablename, dataset))
~ Results will reveal the intercept (o) & the slope/coefticient (B).

2.0 Probability Density Curve
2.1 Probability Density Curve Manual Process

Probability Density Curve: Visualizes the probability distribution, allows us to see how
probabilities are distributed over the values of a random variable.

Features of Density Curves:
e A density curve must lie on or above the horizontal axis.
e Area under the density curve (between curve & horizontal axis) must always equal 1 or
100%.
Probability density will always be between 0 & 1 (area under the curve).
Probability density # probability.
o Probability density compares the likelihood of observing a value.
o Probability compares the probability of the value falling in a range of
observations.
e For a continuous variable (- oo < x < o0), discussing its probability of being a specific
value is not meaningful because it always equals 0.
o Prx=#)=0

Outliers: A data point that significantly deviates from the general pattern or average of the rest
of the data points in a dataset.

e Mean > Median = Right-Skewed (upper)

e Mean < Median = Left-Skewed (lower)
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2.11 General Normal Distribution

X~N (o)

The normal distribution is characterized by its mean (p) and/or standard deviation (o).
o Mean tells us where the center of the curve is.

o Standard deviation tells us how wide the curve is (will also determine the height of
the curve).

2.12 Standard Normal Distribution

Z~N(0,1)

Properties of the standard normal distribution (Z probabilities):
If Pr (-n <Z <n), then = Pr (z <n) -Pr (z < -n).

If Pr (z < 0), then = Pr (z > 0) = 50%.

If Pr (z> a), then = Pr (z < -a).

If Pr (z > a), then = 1-Pr (z < a).

Standardization: Transforming a general normal distribution into the standard normal
distribution.
o Z=X-w/o

2.2 Percentage Returns R Code

Returns <- dataset %>% mutate(dependent_returns = (dependentvariablename -
lag(dependentvariablename)) / lag(dependentvariablename), independent_returns
= (independentvariablename - lag(independentvariablename)) /
lag(independentvariablename)) %>% na.omit()

~ Results will give the percentage returns of the variables.

" lag() «— Captures end-of-previous month prices.

2.3 Beta Rolling Window R Code

rollBeta <- data.frame(WindowEndMonth = as.Date(character()), beta =
numeric(), stringsAsFactors = FALSE)

for(i in 1:(nrow(dataset) - #-1)) {

subset_df <- dataset[i:(i+#-1), ]

subset_beta <-1m(dependent_variablename ~ independent_variablename,
subset_df)

beta_coef <- coef(subset_beta)["independent_variablename" ]

rollBeta <- rbind(rollBeta, data.frame(WindowEndMonth =
subset_df$datevariablenamel #],

beta = beta_coef, row.names=NULL)) }
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~ Identifies an estimated beta value for a dependent variable using a rolling window cycle
(automatic rolling window on R — line 2&3, remove line 2&3 for manual).

2.4 Graph Generation R Code

binwidth <- (max(dataset$variablename) - min(dataset$variablename))/#ofbins
bin_edges <-

seq(min(dataset$variablename) ,max(dataset$variablename) ,binwidth)

" Determine the cutoff values for histogram bins manually (display range of returns for each
bin).

Ggplot(dataset, aes(x = variablename, y =..density..)) + geom_point() +
geom_smooth(method = “lm”, se = False) + geom_histogram(breaks = bin_edges,
fill = “color”, alpha = #) + geom_line() + geom_density(color = “color”, size

= #) + geom_qq() + geom_vline(xintercept = #, linetype = "type") +
geom_abline() + scale_axis_continuous(labels = scales::percent) + labs(title
= “title”, x= “dependent_variablename”, y = “independent_variablename”) +
theme(plot.title = element_text(hjust = #), axis.text/title.axis =
element_text(angle = #)

~ geom_point() «— scatterplot, geom smooth() «— smooth line, geom_histogram() «<— histogram,
geom_line() « time-series plot, geom_density() «— probability density curve, geom qq() «
quantile-quantile plot, geom_vline() «— vertical line, geom_abline() « reference line (intercept =
0, slope =1).

" scale axis_continuous() < Specifies which axis to scale continuously.

" theme classic() «— no grid lines, theme bw() «— grey grid lines, theme() «— Customized looks.
~ se = False «— without the confidence interval, ..density.. «<— scale y-axis from frequency to
probability density, scales::percent «— Label the scales in percentage.

2.3 Probability Calculation R Code

pnorm(x_value, mean = #, sd = #)
~ Results will identify the probability at x-value (z value, mean =0, sd = 1).
~ dnorm() «— gives probability density, qnorm() < finds quartile/percentile.
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3.0 Normal Distribution

3.1 Normal Distribution Manual Process
If a dataset follows standard normal distribution, then Pr(—1 <Z < 1) determines “the percentage
of observation [that] lies within one standard deviation of the mean.”
Nmean (u) + standard deviation (o) = 0+1 = 1, mean (u) - standard deviation () = 0-1 = -1
® 068% of the data lies within one standard deviation of the mean.
® 95% of the data lies within two standard deviations of the mean.
® 99% of the data lies within three standard deviations of the mean.

3.11 IOR-to-SD ratio
IQR /SD = 1.34

~ No fixed universally applicable ratio (only testing through one method is not enough to identify
if a dataset follows a standard normal distribution or not).

3.12 Quantile-Quantile Normality Plot
Pr(Y <yl)=Pr(X <x1)=Pr(Z <zl)=1/(nt+1)
~ Find the probability of the z-score using 1/(n+1) then use standardization to find the x value.

The x values should be very similar with the y values (thus should have a 45° straight line to be a
normal distribution).

3.2 Normal Distribution R Code

dataset %>% mutate(

rangel = if_else(variablename <= mean(variablename) + sd(variablename) &
variablename >= mean(variablename) - sd(variablename),1,0),

range2 = if_else(variablename <= mean(variablename) + 2*sd(variablename) &
variablename >= mean(variablename) - 2xsd(variablename),1,0),

range3 = if_else(variablename <= mean(variablename) + 3*sd(variablename) &
variablename >= mean(variablename) - 3xsd(variablename),1,0))

" Results will identify the ranges of standard deviations from the mean.

dataset %>% summarize(pct_rangel = mean(rangel), pct_range2 = mean(range2),
pct_range3 = mean(range3))
~ Finds the number of observations that fall within the mean of the ranges.
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3.2 QQ Normality Plot R Code

dataset <- dataset %>% mutate(rank = rank(variablename), percentile =
rank/(nrow(dataset)+1), stdnorm = gnorm(percentile))

QQ plot (x=stdnorm, y = (variablename - mean(variablename)/sd(variablename)))
~ Allows you to create a QQ plot for any distribution.

ggplot(dataset, aes(sample = variablename)) + geom_qq() + geom_qg_line(colour
= "colour", linewidth = #) + labs(x = "Theoretical Returns", y = "Sample
Returns")

A Direct QQ plot for sample.

4.0 Sample Probability Distribution
4.1 Sample Probability Distribution Manual Process

Sample Distribution: Inferring the unknown population mean based on the known sample
mean.

Standard Error: Standard deviation of the sample (about 10 times smaller than the population
standard deviation).
e The more samples we have. the smaller the difference between the sample mean and
population mean.

T ~ N(y’ia o‘%)

The mean of the sample means equals to the population mean:

b= = W

X

The standard error equals the population’s standard deviation divided by the square root of the
sample size:

N

(o ==
X
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Central Limit Theorem (CLT): By satisfying the following three conditions, the samples will
follow a normal distribution, even if the population does not (z-score can be used):
e We must always be able to draw out multiple samples out of the population.
e We must know the mean and standard deviation of the population,
e The sample size must be sufficiently large (greater than or equal to 30 observations), if it
is not a normally distributed population.

4.2 Sample Probability Distribution R Code

set.seed(#)

sampleset <- dataset %>% slice_sample(n = #)

~ Seed value can be any value (links the value to a fixed set of sample observations).

dataset <- data.frame(variablename = numeric())

for (i in 1:10) {

set.seed(i)

sample <- dataset %>% slice_sample (n = #)

temp_var <- mean(sample$variablename)

mvar <- rbind(mvar, data.frame(avg_var = temp_var, row.names = NULL))}

~ Results allows for estimation of the variable’s average variability (taking random samples &
finding the mean of each, compiling it all together to compare).

5.0 Confidence & Significance Levels
5.1 Confidence & Significance Levels Manual Testing

Sample Standard Deviation: Where s = sample standard deviation, n = # of observations, and X =
sample mean.

g (z; — T)?

3:\ n—1

Point Estimator: Claim of a specific, singular point.
Interval Estimator: Claim of a range that a point may fall into (more confident).
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The confidence interval (CI) for an unknown population mean can be written as:

X — MoE < 4 < X + MoE

Margin of Error (MoE): Considered a buffer zone.
e MoE = Critical Value * Standard Error

Standard Error: Population (or sample) Standard Deviation / Sqrt of # of Observations

__ of(ors)
SE = =

Critical Value = Z o
2

Confidence Level: Measures how confident we are that the calculated interval contains the true
(but unobservable) population mean.
e Most Common Confidence Level: 90% / 95% / 99%.
o e.g,Pr()=95%
e The greater the confidence level is, the wider the confidence interval is.

Scenario 1: o is known, confidence level is 95%.
o Pr(XL<x<xXU)=95%(1-a)
This means the left over = 5% (a), 2.5% on each side (a/2) «<— two-tailed.
That means Pr( X <XL ) =2.5%
Standardization of sample to standard: Z = (X - p) / (6 / Vn)
Generally: Pr(-Z 0/2 <Z <Z o/2)
Therefore when o is known: X - Z o/2 * (6 /Vn) < p<x+Z a2 * (c/Vn)=1-a

Scenario 2: 6 is UNKNOWN, confidence level is still 95%.
e Replace the population sd with the sample sd (s).

_X-up
s/y/n

t

10
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e This will no longer give a standard normal distribution (Z). As a result, we use the
t-distribution or t-score (t-distribution has fatter tails than the normal distribution).

e By increasing more of the observations, the t-distribution will become more and more
like the standard normal distribution.

S = S
X _tcx/Q (ﬁ) < u <X +tc2/2 (%)

~ Replaced all of Z with t & all of ¢ with s.

5.2 T-Statistic R Code
sample_size <- #
alpha <- #

confidence_level = 1-alpha

t-value <- qt(confidence_level,df= sample_size - 1)

~ Identifies the quantiles for t-distribution.

A Use gnorm() to find z-scores «— check: see 2.3 Probability Calculation R Code.

mu <- mean(variablename)

sigma <- sd(variablename)

margin_error <- t_value * (sigma / sqrt(sample_size))
ci_lower <- mu - margin_error

ci_upper <- mu + margin_error

~ Finds the MoE and confidence interval of the sample.

6.0 Hypothesis Testing

6.1 Hypothesis Testing Manual Process:

Null Hypothesis: What we are testing.

Alternative Hypothesis: Anything but the null hypothesis.
As words:

o Null Hypothesis: The mean is equal to .
o Alternative Hypothesis: The alternative hypothesis is not __ (null hypothesis).
e Assymbols:
o Hpp=__
°© Hpp#___
NOTE: The null hypothesis can NOT be an inequality.
Rejection region:
o SD known: Z < -z, or Z>z7,,
o SD unknown: t < -t , or t>t,,

11
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Two-Tailed Test:
e Alternative hypothesis is non-directional, solely rejecting the null hypothesis.
o eg,H,ip#Fn
o Rejection region is equally split between both tails of the distribution (each
area accounts for a/2).

One-Tailed Test:
e Alternative hypothesis is directional, in which the entire rejection region (o) will be at
one tail of the distribution (lower or upper).
o eg, Hytp<py(H,=p>p

m  Only one critical value is needed.

m Pr(t<t*)=aqa

m Depending on the H,, the p-value probability sign will follow the same

way.

P value: Calculating critical value(s) and the area beyond them to determine if H,, is rejected.

R Code: Calculating rejection range using P value, which can be done by:
xbar <- 173.02

mu@ <- 175
s <- 10.95
n <- 162

# Calculate t-statistic
t_stat <- (xbar-mu@)/(s/sqrt(n))

# Determine p-value
area_lower <- pt(t_stat, df = n-1)
area_upper <- 1- pt(-t_stat, df = n-1)

#return rejection region
area_lower+area_upper

Element One-Sample Two-Sample
Population Parameter I B — pa
Sample Statistic X X — X»
2 2 2 2
a & a a. & Ly
Standard Error — or — B Y
\/'E 7L ] ne T T2

s s2\?
(_1 3+ 22
L1 Ty
- 2 - 2
1 sf 1 sj
21 + 2
np — 1\ m nz — 1 \ n2

Degree of Freedom n—1

12
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