SFMSO

Education
AFM 112 Midterm Prep

Disclosure: This material is for educational purposes only and is intended to supplement
course content. Please ensure you review the class materials independently.

é FMSO AFM 112 Midterm

Table of Contents
1.0 Load and Read Data
2.0 Basic Commands
3.0 Create New Variables

3.1 Focus on Specific Observations

3.1.1 To view the store that generated the largest loss (negative gross profit).

4.0 All Code from Chapter 6
5.0 Summarize() Explanation:
6.0 Mutate() Explanation

6.1 Example of Summary() and Mutate()
7.0 Descriptive Statistics
8.0 Determining Outliers

8.1 Code for extreme outliers

8.2 To Test for Extreme Outliers

8.2.1 For an “IF” statement that automatically performs the test for extreme outliers and returns
the outcome.

8.2.2 To add a line to include gross profit margin for each store and product type
9.0 Aggregate Explanation
10.0 Store and Product Classification Code
11.0 Store Analysis Code
11.1 Use the code below:
11.1.1 To find the two best selling days from Store 2
12.0 OK Cupid Code Example
12.1 Data Understanding
12.2 To find missing values:
12.3 Focus on certain data
12.3.1 How many users have not reported income (reported income of -1)
12.3.2 Create new data set for users that reported income
12.3.3 To create a boxplot with results
12.3.4 To determine how many outliers
12.3.5 Generate summary statistics to understand the income distribution within the outliers:
12.3.6 Adding binary variable (reportlncome)
13.0 Formula Sheet

O O O L 0 0 3 U L i A KA A

10
10
10
11
11
11
12
12
12
12
12
12
12
13

13
14

é FIMSO AFM 112 Midterm

1.0 Load and Read Data

Control + L to clear the console.

“#” to make a note (doesn’t run the code).
Command + return to run the line.

<- means “gets”.

Used when assigning values for a variable.
Use command read csv to load data.

dtL1 <- read_csv(“LSL2019 cogs.csv”).
dtL1 %>% names() to view variable names.
dtL1 %>% glimpse() for a detailed understanding of data set.
<dbl> for variables that are numeric values.
<chr> for variables that are text based.
<date> for date-based variables.

2.0 Basic Commands

“C” puts all numbers together into one variable.
dtL1 %>% slice_head(n=3) to show top three observations.
dtL1 %>% slice-tail (n=5) to show bottom five observations.
%>% is “pipe operator”.
o Establishes a sequence of operations.
select() is done to focus on three variables and generate summary/descriptive statistics.
o dtL1 %>% select (SalesQuantity, RetailPriceUnit, productCostUnit) %>%
summary().
To determine how many missing values:
o Dt %>% is.na() %>% colSums()
To calculate upper whisker for sales quantity:
o uw_salesQuantity =
quantile(dtL1$SalesQuantity,.75)+1.5*IQR(dtL1$SalesQuantity)
To calculate lower whisker for sales quantity:
o lw_salesQuantity =
quantile(dtL1$SalesQuantity,.25)-1.5*IQR(dtL1$SalesQuantity)

3.0 Create New Variables

Use dtL.1 %>% glimpse() to ensure variables have been added.
Use select() to specify new quantitative variables to generate descriptive statistics.
dtL1 %>% select(Revenue, cogs, GrossProfit) %>% summary/()

é FMSO AFM 112 Midterm

3.1 Focus on Specific Observations

e Use command filter().
e To look at itemized transaction associated with max order:

dtL2 %>% filter(SalesQuantity == max(SalesQuantity) %>%
select(Store,
SalesDate,
Description,
SalesQuantity,
RetailPriceUnit,
productCostUnit)

e Two conditions required:
o The first is that the product is Circadia Chardonnay because it had the largest loss.
o Second is that gross profit is negative.

dtL2 %>% filter(Description == “Circadia Chardonnay” & GrossProfit <0) %>%

select(Store, SalesDate, Description, SalesQuantity, RetailPriceUnit, productCostUnit,
Gross Profit)

Shows specific variable, then looks at min:

dtL2 %>% filter (GrossProfit == min(GrossProfit)) %>% select (Store, SalesDate,
Description, SalesQuantity, RetailPriceUnit, productCostUnit, Revenue, cogs,
GrossProfit)

4.0 All Code from Chapter 6

Set working directory to source file location

Load library
library(tidyverse)

library(lubridate) # needed for extracting weekdays, weeks, months

é FMSO AFM 112 Midterm

Load data
dtL1 <- read _csv("LSL2019 cogs.csv")

Review/understand data structure

dtL1 %>% names()
dtL1 %>% glimpse()
dtL1 %>% slice_head(n=3)

Understand data - summary statistics for numeric variables
dtL1 %>%

select(SalesQuantity, RetailPriceUnit, productCostUnit) %>%
summary(uw_salesQuantity = quantile(dtL 1$SalesQuantity,.75) +
1.5*IQR(dtL1$SalesQuantity

uw_salesQuantity

lw_salesQuantity = quantile(dtL1$SalesQuantity,.25) - 1.5*IQR(dtL1$SalesQuantity)

Iw_salesQuantity
dtL1 %>%
select(productCostUnit) %>%

summary()

Data preparation

dtL1 <- dtL1 %>% mutate(
ProductPriceUnit=RetailPriceUnit/1.13,
ProductType=ifelse(ProductPriceUnit>20,"Premium","Regular"),
Revenue= ProductPriceUnit*SalesQuantity,

cogs=productCostUnit*SalesQuantity,

é FMSO AFM 112 Midterm

GrossProfit=Revenue-cogs,
day=weekdays(SalesDate),
dayNo=wday(SalesDate)

)

Summary statistics for new variables

e (Code below creates a new variable, gross profit margin.
dtL1 %>%
select(Revenue, cogs, GrossProfit) %>%

summary()

dtL1 ptQ1 <- dtL1 %>%
mutate(storeGPM=(storeGP/storeRevenue)*100)
Select(Store, SalesQuantity, Revenue, cogs, GrossProfit) %>%
group_by (Store) %>%
summarize()

Alternatively, mutate can be used to get a different output.

StoreSalesQ= sum(SalesQuantitiy),

StoreRevenue= sum(Revenue),

StoreCOGS= sum(cogs),

StoreGP= sum(Gross Profit)) %>%

ungroup()

Anytime you group, make sure you ungroup at the bottom.

5.0 Summarize() Explanation:

e Used with group_by() to create new aggregate variables for each group.

e Allows for the calculation of the summary (sum) or descriptive statistics (min, max,
median, mean, etc) for each group.

e Using summarize() without “group_by” will generate a summary for the entire data set
(The output will have only one line.)

é FMSO AFM 112 Midterm

6.0 Mutate() Explanation

e R will generate summary or descriptive statistics for each group and it will add the group
level aggregate next to each observation.
o It will generate as many lines as the original data set.
e R does not treat the results of queries as a new data set, so if we want to have aggregate
values across all stores, we need to create a separate query.

6.1 Example of Summary() and Mutate()
dtL1 %>%

select (Store, SalesQuantity, Revenue, cogs, GrossProfit) %>%
summarize(storeSalesQ= sum(SalesQuantity),

storeRevenue= sum(Revenue),
storeCOGS= sum(cogs),
storeGP= sum(GrossProfit),

storeGPM=(sum(GrossProfit)/sum(Revenue)*100)) %>%

ungroup()

To include gross profit margin across all stores, add the line below after code “ungroup()”

mutate(storeGPM=(storeGP/storeRevenue)*100)

7.0 Descriptive Statistics

See the code below specifically for the gross profit per transaction for each store:

dtL1 ptQ2 <- dtL1 %>%
select(Store, GrossProfit) %>%
group_by(Store) %>%

summarize(minGP = min(GrossProfit), 1 GP = quantile(GrossProfit, .25), #formula for
Q1

maxGP = max(GrossProfit), avgGP = mean(GrossProfit), medianGP=

é FMSO AFM 112 Midterm

median(GrossProfit), Q3GP = quantile(GrossProfit, .75), sdGP = sd(GrossProfit),
IQR=IQR(GrossProfit)) %>%

8.0 Determining Outliers

e Variable xtrmLW is Q1- 3* IQR
e Variable xtrmUW is Q3+3*IQR

8.1 Code for extreme outliers
dtL1 ptQ2 <- dtL1 ptQ2 %>%
mutate(xtrmLW= q1GP-3 * IQR, xtrmUW = q3GP +3 * IQR)
dtL1 ptQ2
dtL2 ptQ2 <- dtL2 ptQ2 %>%
mutate(xtrmBelow= ifelse(minGP<xtrmLW, 1, 0),

xtrmAbove= ifelse(maxGP>xtremUW, 1, 0))

8.2 To Test for Extreme Outliers

8.2.1 For an “IF” statement that automatically performs the test for extreme
outliers and returns the outcome.

Recall that (1) means true and (0) means false.

dtL1_ptQ2 %>%

mutate(xtrmBelow= ifelse(minGP<xtrmLW, 1,0),
xtrAbove= ifelse(maxGP>xtrmUW, 1, 0)) %>%

select(Store, minGP, maxGP, xtrmLW, xtrmUW, xtrmBelow, xtrAbove)

8.2.2 To add a line to include gross profit margin for each store and product type

dtL1 ptQ3a<-dtL1 ptQ3a %>%
mutate(storeGPM=(storeGP/storeRevenue)*100)

dtL1 ptQ3a

é FMSO AFM 112 Midterm

9.0 Aggregate Explanation

To generate the aggregate (sum) for each product type and include the gross profit margin for
each product type. Use code below:

dtL1 %>%
select(Store, ProductType, SalesQuantity, Revenue, cogs,
GrossProfit) %>%
group_by(ProductType) %>%
summarize(storeSalesQ=sum(SalesQuantity),
storeRevenue=sum(Revenue),
storeCOGS=sum(cogs),
storeGP=sum(GrossProfit)) %>%
ungroup() %>%

mutate(storeGPM=(storeGP/storeRevenue)*100)

10.0 Store and Product Classification Code

dtL1_ptQ3b <- dtL1 %>%
select(Store, Classification, SalesQuantity, Revenue, cogs,
GrossProfit) %>%
group_by(Store, Classification) %>%
summarize(storeSalesQ=sum(SalesQuantity),
storeRevenue=sum(Revenue),
storeCOGS=sum(cogs),
storeGP=sum(GrossProfit)) %>%
ungroup() %>%
mutate(storeGPM=(storeGP/storeRevenue)*100)
dtL1 ptQ3b

é FMSO AFM 112 Midterm

11.0 Store Analysis Code

To show total units sold on each day of the week for each of the stores, and a second query to
show the total units sold on each day of the week for each product type.

11.1 Use the code below:
dtL1 ptQ4a <- dtL1 %>%
select(Store, dayNo, day, SalesQuantity) %>%
Use “dayNo” to show days of the week in order
group_by(Store, dayNo, day) %>%
summarize(storeSalesQ=sum(SalesQuantity)) %>%

ungroup()
dtL1 ptQ4a

11.1.1 To find the two best selling days from Store 2

dtL1 ptQ4a %>% filter(Store==2) %>% slice_max(storeSalesQ, n=2)

dtL1 ptQ4b <- dtL1 %>%
select(ProductType, dayNo, day, SalesQuantity) %>%
group by(ProductType, dayNo, day) %>%
summarize(storeSalesQ=sum(SalesQuantity)) %>%

ungroup()
dtL1 ptQ4b

12.0 OK Cupid Code Example

12.1 Data Understanding

Library(tidyverse)

options(scipen=99)

10

é FMSO AFM 112 Midterm
dtL1 %>% glimpse()

12.2 To find missing values:

dtL1 %>% is.na() %>% colSums()

12.3 Focus on certain data
dtL1 %>%
select(age, height, income) %>%

summary()

12.3.1 How many users have not reported income (reported income of -1)

dtL1 %>%
mutate(reportINcome=ifelse(income==1, “No”, “Yes”)) %>%

count(reportlncome) %>% #counts how many observations are in the variable
reportIncome

mutate(freq=n/sum(n))

12.3.2 Create new data set for users that reported income

dtL1a <- dtL1 %>% filter(income!=-1) #filter users who have reported income
dtL1a %>%

select(income %>% summary()

12.3.3 To create a boxplot with results

boxplot(dtL1a$income, horizontal = TRUE, main= “Income”)

12.3.4 To determine how many outliers

1. Create a new variable to capture the end of the upper whisker.
2. Use the variable as a filter and generate count on filtered results.

endUW <- quantile(dtL1a$income, .75) + 1.5*IQR(dtL1a$income)

dtL1a %>% filter(income>endUW) %>% select(income) %>% count()

11

é FMSO AFM 112 Midterm

12.3.5 Generate summary statistics to understand the income distribution within
the outliers:

dtL1a %>% filter(income>endUW) %>% select(income) %>% summary()

12.3.6 Adding binary variable (reportIncome)

e Shows whether a user has reported their income as part of their profile
e (Categorical variable (incomeGroup) that captures all different income groups/categories:

dtL1 <- dtL1 %>%

For users who did not report income

mutate(reportIncome= ifelse(income==-1, “No”, “Yes”), incomeGroup=case when(

income==-1 ~ “IG1_doNotReport”

For gr f users whose income is bel 1
income<= 20000 ~ “IG2_belowMedian”

For group of users whose income is between Q1 and Q3 (around the median)
income<100000 ~ “IG3_aroundMedian”

For group of users whose income is above Q3 but below upper whisker

income<220000 ~ “IG4 _aboveMedian”

For users whose income is above end of upper whisker
TRUE ~ “IG5_top1Pct”))

13.0 Formula Sheet

Code Description
library() Load the package
names() View variable names
glimpse() Details of data set

12

@FMsOo

select()
summary()
dir()

ifelse()
weekdays()
wday()
read csv()
slice_head(n=)
slice_tail(n=)
slice_ max(n=)
slice. min(n=)
filter()

is.na()

colSum()

is.na() %>%
colSums()
arrange()

distinct()
nrow()
mutate()

summarize()

group_by()

options(scipen=

)

AFM 112 Midterm

e Shows data points, variables, names of variables, format, and

a brief summary
Focus on a subset of variables
Generate summary/descriptive statistics
To see the files in the folder
Equivalent to if() in spreadsheets
Name of the day of the week
Numeric value representing weekday
Read the data set
Look at the top “n” lines
Look at the bottom “n” lines
For a given variable, select rows with the highest values
For a given variable, select rows with the lowest values
Specific observations

Examines value of variable and returns TRUE=1 if the value is missing and
FALSE=O0 if the value is not missing

Generates the sum of all values in a column

Answers the question “How many missing values are in these variables?”

Arrange

Look through the data set and give the unique rows
How many rows are present in a data frame

Create new variables

Generate aggregate variables for groups
e Typically used with group by()
e Used to calculated summary or descriptive statistics
e If"group by" is not used, summary statistics for the entire
data set are presented (only one line)

Grouping by a specific variable

Do not present scientific notation in the reporting of results

@FMsOo

horizontal=TRU
E

quantile(
,.25)

quantile(
,.75)
case_when()

pivot wider()

count()

condProb()
split()
map(summary)
set.seed()

write_csv(input,
"output")

AFM 112 Midterm

Graph shown horizontally

First quartile

Third quartile

Acts as a placeholder for multiple nested if statements
Pivot table output

Count how many of the reported the variable in the brackets
e Represented by "n"

Probability given a condition

Divides the data into groups defined by variables specified
Command summary is applied to each group

Indicates to return the same sample in randomization

Create a copy and make a data set out of it

Separates one variable from the other
Equality
Define a new variable or new data set

Pipe
e Sequence of operations/actions

0
1
Used to connect two conditions (e.g. connect 2 conditions in a filter)

"not equal"

e <dbl>: For variables that take numeric values.
o <chr>: Variables which are text-based.
e <date>: Date-based variables.

14

	1.0 Load and Read Data
	2.0 Basic Commands
	3.0 Create New Variables
	3.1 Focus on Specific Observations
	3.1.1 To view the store that generated the largest loss (negative gross profit).

	4.0 All Code from Chapter 6
	5.0 Summarize() Explanation:
	6.0 Mutate() Explanation
	​6.1 Example of Summary() and Mutate()

	7.0 Descriptive Statistics
	8.0 Determining Outliers
	8.1 Code for extreme outliers
	​8.2 To Test for Extreme Outliers
	8.2.1 For an “IF” statement that automatically performs the test for extreme outliers and returns the outcome.
	8.2.2 To add a line to include gross profit margin for each store and product type

	9.0 Aggregate Explanation
	10.0 Store and Product Classification Code
	11.0 Store Analysis Code
	11.1 Use the code below:
	11.1.1 To find the two best selling days from Store 2

	12.0 OK Cupid Code Example
	12.1 Data Understanding
	12.2 To find missing values:
	12.3 Focus on certain data
	12.3.1 How many users have not reported income (reported income of -1)
	12.3.2 Create new data set for users that reported income
	12.3.3 To create a boxplot with results
	12.3.4 To determine how many outliers
	12.3.5 Generate summary statistics to understand the income distribution within the outliers:
	12.3.6 Adding binary variable (reportIncome)

	13.0 Formula Sheet

