

 Education
AFM 112 Midterm Prep

Disclosure: This material is for educational purposes only and is intended to supplement
course content. Please ensure you review the class materials independently.

1

AFM 112 Midterm

Table of Contents
1.0 Load and Read Data​ 4
2.0 Basic Commands​ 4
3.0 Create New Variables​ 4

3.1 Focus on Specific Observations​ 5
3.1.1 To view the store that generated the largest loss (negative gross profit).​ 5

4.0 All Code from Chapter 6​ 5
5.0 Summarize() Explanation:​ 7
6.0 Mutate() Explanation​ 8

6.1 Example of Summary() and Mutate()​ 8
7.0 Descriptive Statistics​ 8
8.0 Determining Outliers​ 9

8.1 Code for extreme outliers​ 9
8.2 To Test for Extreme Outliers​ 9

8.2.1 For an “IF” statement that automatically performs the test for extreme outliers and returns
the outcome.​ 9
8.2.2 To add a line to include gross profit margin for each store and product type​ 10

9.0 Aggregate Explanation​ 10
10.0 Store and Product Classification Code​ 10
11.0 Store Analysis Code​ 11

11.1 Use the code below:​ 11
11.1.1 To find the two best selling days from Store 2​ 11

12.0 OK Cupid Code Example​ 12
12.1 Data Understanding​ 12
12.2 To find missing values:​ 12
12.3 Focus on certain data​ 12

12.3.1 How many users have not reported income (reported income of -1)​ 12
12.3.2 Create new data set for users that reported income​ 12
12.3.3 To create a boxplot with results​ 12
12.3.4 To determine how many outliers​ 13
12.3.5 Generate summary statistics to understand the income distribution within the outliers:​ 13
12.3.6 Adding binary variable (reportIncome)​ 13

13.0 Formula Sheet​ 14

2

AFM 112 Midterm

1.0 Load and Read Data
●​ Control + L to clear the console.
●​ “#” to make a note (doesn’t run the code).
●​ Command + return to run the line.
●​ <- means “gets”.
●​ Used when assigning values for a variable.
●​ Use command read_csv to load data.
●​ dtL1 <- read_csv(“LSL2019_cogs.csv”).
●​ dtL1 %>% names() to view variable names.
●​ dtL1 %>% glimpse() for a detailed understanding of data set.
●​ <dbl> for variables that are numeric values.
●​ <chr> for variables that are text based.
●​ <date> for date-based variables.

2.0 Basic Commands
●​ “C” puts all numbers together into one variable.
●​ dtL1 %>% slice_head(n=3) to show top three observations.
●​ dtL1 %>% slice-tail (n=5) to show bottom five observations.
●​ %>% is “pipe operator”.

o​ Establishes a sequence of operations.
●​ select() is done to focus on three variables and generate summary/descriptive statistics.

o​ dtL1 %>% select (SalesQuantity, RetailPriceUnit, productCostUnit) %>%
summary().

●​ To determine how many missing values:
o​ Dt %>% is.na() %>% colSums()

●​ To calculate upper whisker for sales quantity:
o​ uw_salesQuantity =

quantile(dtL1$SalesQuantity,.75)+1.5*IQR(dtL1$SalesQuantity)
●​ To calculate lower whisker for sales quantity:

o​ lw_salesQuantity =
quantile(dtL1$SalesQuantity,.25)-1.5*IQR(dtL1$SalesQuantity)

3.0 Create New Variables
●​ Use dtL1 %>% glimpse() to ensure variables have been added.
●​ Use select() to specify new quantitative variables to generate descriptive statistics.

dtL1 %>% select(Revenue, cogs, GrossProfit) %>% summary()​

3

AFM 112 Midterm

3.1 Focus on Specific Observations
●​ Use command filter().
●​ To look at itemized transaction associated with max order:

dtL2 %>% filter(SalesQuantity == max(SalesQuantity) %>%

select(Store,

SalesDate,

Description,

SalesQuantity,

RetailPriceUnit,

productCostUnit)

3.1.1 To view the store that generated the largest loss (negative gross profit).
●​ Two conditions required:

o​ The first is that the product is Circadia Chardonnay because it had the largest loss.
o​ Second is that gross profit is negative.

dtL2 %>% filter(Description == “Circadia Chardonnay” & GrossProfit <0) %>%

select(Store, SalesDate, Description, SalesQuantity, RetailPriceUnit, productCostUnit,
Gross Profit)

Shows specific variable, then looks at min:

dtL2 %>% filter (GrossProfit == min(GrossProfit)) %>% select (Store, SalesDate,
Description, SalesQuantity, RetailPriceUnit, productCostUnit, Revenue, cogs,
GrossProfit)

4.0 All Code from Chapter 6
Set working directory to source file location

Load library

library(tidyverse)

library(lubridate) # needed for extracting weekdays, weeks, months

4

AFM 112 Midterm

Load data

dtL1 <- read_csv("LSL2019_cogs.csv")

Review/understand data structure

dtL1 %>% names()

dtL1 %>% glimpse()

dtL1 %>% slice_head(n=3)

Understand data - summary statistics for numeric variables

dtL1 %>%

 ​ select(SalesQuantity, RetailPriceUnit, productCostUnit) %>%

 ​ summary(uw_salesQuantity = quantile(dtL1$SalesQuantity,.75) +

 1.5*IQR(dtL1$SalesQuantity

uw_salesQuantity

​

lw_salesQuantity = quantile(dtL1$SalesQuantity,.25) - 1.5*IQR(dtL1$SalesQuantity)

lw_salesQuantity

dtL1 %>%

 select(productCostUnit) %>%

 summary()

Data preparation

dtL1 <- dtL1 %>% mutate(

ProductPriceUnit=RetailPriceUnit/1.13,

ProductType=ifelse(ProductPriceUnit>20,"Premium","Regular"),

 ​ ​ Revenue= ProductPriceUnit*SalesQuantity,

 ​ ​ cogs=productCostUnit*SalesQuantity,

5

AFM 112 Midterm

 ​ ​ GrossProfit=Revenue-cogs,

 ​ ​ day=weekdays(SalesDate),

 ​ ​ dayNo=wday(SalesDate)

)

Summary statistics for new variables

●​ Code below creates a new variable, gross profit margin.

dtL1 %>%

 ​ ​ select(Revenue, cogs, GrossProfit) %>%

 ​ ​ summary()​

dtL1_ptQ1 <- dtL1 %>%

mutate(storeGPM=(storeGP/storeRevenue)*100)

Select(Store, SalesQuantity, Revenue, cogs, GrossProfit) %>%

group_by (Store) %>%

summarize() ​ ​

Alternatively, mutate can be used to get a different output.

StoreSalesQ= sum(SalesQuantitiy),

StoreRevenue= sum(Revenue),

StoreCOGS= sum(cogs),

StoreGP= sum(Gross Profit)) %>%

ungroup()

Anytime you group, make sure you ungroup at the bottom.

5.0 Summarize() Explanation:
●​ Used with group_by() to create new aggregate variables for each group.
●​ Allows for the calculation of the summary (sum) or descriptive statistics (min, max,

median, mean, etc) for each group.
●​ Using summarize() without “group_by” will generate a summary for the entire data set

(The output will have only one line.)

6

AFM 112 Midterm

6.0 Mutate() Explanation
●​ R will generate summary or descriptive statistics for each group and it will add the group

level aggregate next to each observation.
o​ It will generate as many lines as the original data set.

●​ R does not treat the results of queries as a new data set, so if we want to have aggregate
values across all stores, we need to create a separate query.

​
6.1 Example of Summary() and Mutate()

dtL1 %>%

select (Store, SalesQuantity, Revenue, cogs, GrossProfit) %>%​
​ summarize(storeSalesQ= sum(SalesQuantity),

storeRevenue= sum(Revenue),

storeCOGS= sum(cogs),

storeGP= sum(GrossProfit),

storeGPM=(sum(GrossProfit)/sum(Revenue)*100)) %>%

ungroup()

To include gross profit margin across all stores, add the line below after code “ungroup()” ​

mutate(storeGPM=(storeGP/storeRevenue)*100)

7.0 Descriptive Statistics
See the code below specifically for the gross profit per transaction for each store:​

dtL1_ptQ2 <- dtL1 %>%

 select(Store, GrossProfit) %>%

 group_by(Store) %>%

 summarize(minGP = min(GrossProfit), q1GP = quantile(GrossProfit, .25), #formula for
Q1

 ​ ​ maxGP = max(GrossProfit), avgGP = mean(GrossProfit), medianGP=

7

AFM 112 Midterm

median(GrossProfit), q3GP = quantile(GrossProfit, .75), sdGP = sd(GrossProfit),

IQR=IQR(GrossProfit)) %>%

8.0 Determining Outliers
●​ Variable xtrmLW is Q1- 3* IQR
●​ Variable xtrmUW is Q3+3*IQR

8.1 Code for extreme outliers
dtL1_ptQ2 <- dtL1_ptQ2 %>%

mutate(xtrmLW= q1GP-3 * IQR, xtrmUW = q3GP +3 * IQR)

dtL1_ptQ2

dtL2_ptQ2 <- dtL2_ptQ2 %>%

mutate(xtrmBelow= ifelse(minGP<xtrmLW, 1, 0),

xtrmAbove= ifelse(maxGP>xtremUW, 1, 0))

​
8.2 To Test for Extreme Outliers

8.2.1 For an “IF” statement that automatically performs the test for extreme
outliers and returns the outcome.
Recall that (1) means true and (0) means false.
​
​ dtL1_ptQ2 %>%

 ​ ​ mutate(xtrmBelow= ifelse(minGP<xtrmLW, 1,0),

 ​ ​ ​ xtrAbove= ifelse(maxGP>xtrmUW, 1, 0)) %>%

 ​ ​ select(Store, minGP, maxGP, xtrmLW, xtrmUW, xtrmBelow, xtrAbove)

8.2.2 To add a line to include gross profit margin for each store and product type

dtL1_ptQ3a <- dtL1_ptQ3a %>%

 ​ ​ mutate(storeGPM=(storeGP/storeRevenue)*100)

dtL1_ptQ3a

8

AFM 112 Midterm

9.0 Aggregate Explanation
To generate the aggregate (sum) for each product type and include the gross profit margin for
each product type. Use code below:

dtL1 %>%

 select(Store, ProductType, SalesQuantity, Revenue, cogs,

 ​ ​ ​ GrossProfit) %>%

 ​ ​ group_by(ProductType) %>%

 ​ ​ summarize(storeSalesQ=sum(SalesQuantity),

 ​ ​ ​ storeRevenue=sum(Revenue),

 ​ ​ ​ storeCOGS=sum(cogs),

 ​​ ​ storeGP=sum(GrossProfit)) %>%

 ​ ​ ungroup() %>%

 ​ ​ mutate(storeGPM=(storeGP/storeRevenue)*100)

10.0 Store and Product Classification Code
dtL1_ptQ3b <- dtL1 %>%

 ​ ​ select(Store, Classification, SalesQuantity, Revenue, cogs,

 ​ ​ GrossProfit) %>%

 ​ group_by(Store, Classification) %>%

 summarize(storeSalesQ=sum(SalesQuantity),

 ​ ​ storeRevenue=sum(Revenue),

 ​ ​ storeCOGS=sum(cogs),

 ​ ​ storeGP=sum(GrossProfit)) %>%

 ​ ungroup() %>%

 ​ ​ mutate(storeGPM=(storeGP/storeRevenue)*100)

dtL1_ptQ3b

9

AFM 112 Midterm

11.0 Store Analysis Code
To show total units sold on each day of the week for each of the stores, and a second query to
show the total units sold on each day of the week for each product type.

11.1 Use the code below:
dtL1_ptQ4a <- dtL1 %>%

 ​ ​ select(Store, dayNo, day, SalesQuantity) %>%

Use “dayNo” to show days of the week in order

group_by(Store, dayNo, day) %>%

 ​ ​ summarize(storeSalesQ=sum(SalesQuantity)) %>%

 ​ ​ ungroup()

dtL1_ptQ4a

11.1.1 To find the two best selling days from Store 2

dtL1_ptQ4a %>% filter(Store==2) %>% slice_max(storeSalesQ, n=2)​

dtL1_ptQ4b <- dtL1 %>%

 ​ ​ select(ProductType, dayNo, day, SalesQuantity) %>%

 ​ ​ group_by(ProductType, dayNo, day) %>%

 ​ ​ summarize(storeSalesQ=sum(SalesQuantity)) %>%

 ​ ​ ungroup()

dtL1_ptQ4b

12.0 OK Cupid Code Example

12.1 Data Understanding
Library(tidyverse)

options(scipen=99)

10

AFM 112 Midterm

dtL1 %>% glimpse()

12.2 To find missing values:
dtL1 %>% is.na() %>% colSums()

12.3 Focus on certain data
dtL1 %>%

select(age, height, income) %>%

summary()

12.3.1 How many users have not reported income (reported income of -1)

dtL1 %>%

mutate(reportINcome=ifelse(income==1, “No”, “Yes”)) %>%

count(reportIncome) %>% #counts how many observations are in the variable
reportIncome

mutate(freq=n/sum(n))

12.3.2 Create new data set for users that reported income

dtL1a <- dtL1 %>% filter(income!=-1) #filter users who have reported income

dtL1a %>%

select(income %>% summary()

12.3.3 To create a boxplot with results

boxplot(dtL1a$income, horizontal = TRUE, main= “Income”)

12.3.4 To determine how many outliers

1.​ Create a new variable to capture the end of the upper whisker.
2.​ Use the variable as a filter and generate count on filtered results.

endUW <- quantile(dtL1a$income, .75) + 1.5*IQR(dtL1a$income)

dtL1a %>% filter(income>endUW) %>% select(income) %>% count()

11

AFM 112 Midterm

12.3.5 Generate summary statistics to understand the income distribution within
the outliers:

dtL1a %>% filter(income>endUW) %>% select(income) %>% summary()

12.3.6 Adding binary variable (reportIncome)

●​ Shows whether a user has reported their income as part of their profile
●​ Categorical variable (incomeGroup) that captures all different income groups/categories:

dtL1 <- dtL1 %>%

For users who did not report income

mutate(reportIncome= ifelse(income==-1, “No”, “Yes”), incomeGroup=case_when(

income==-1 ~ “IG1_doNotReport”

For group of users whose income is below Q1

income<= 20000 ~ “IG2_belowMedian”

For group of users whose income is between Q1 and Q3 (around the median)

income<100000 ~ “IG3_aroundMedian”

For group of users whose income is above Q3 but below upper whisker

income<220000 ~ “IG4_aboveMedian”

For users whose income is above end of upper whisker

TRUE ~ “IG5_top1Pct”))

13.0 Formula Sheet
Code Description

library() Load the package

names() View variable names

glimpse() Details of data set

12

AFM 112 Midterm

●​ Shows data points, variables, names of variables, format, and
a brief summary

select() Focus on a subset of variables

summary() Generate summary/descriptive statistics

dir() To see the files in the folder

ifelse() Equivalent to if() in spreadsheets

weekdays() Name of the day of the week

wday() Numeric value representing weekday

read_csv() Read the data set

slice_head(n=) Look at the top “n” lines

slice_tail(n=) Look at the bottom “n” lines

slice_max(n=) For a given variable, select rows with the highest values

slice_min(n=) For a given variable, select rows with the lowest values

filter() Specific observations

is.na() Examines value of variable and returns TRUE=1 if the value is missing and
FALSE=0 if the value is not missing

colSum() Generates the sum of all values in a column

is.na() %>%
colSums()

Answers the question “How many missing values are in these variables?”

arrange() Arrange

distinct() Look through the data set and give the unique rows

nrow() How many rows are present in a data frame

mutate() Create new variables

summarize() Generate aggregate variables for groups
●​ Typically used with group_by()
●​ Used to calculated summary or descriptive statistics
●​ If "group_by" is not used, summary statistics for the entire

data set are presented (only one line)

group_by() Grouping by a specific variable

options(scipen=
)

Do not present scientific notation in the reporting of results

13

AFM 112 Midterm

horizontal=TRU
E

Graph shown horizontally

quantile(______
, .25)

First quartile

quantile(______
, .75)

Third quartile

case_when() Acts as a placeholder for multiple nested if statements

pivot_wider() Pivot table output

count() Count how many of the reported the variable in the brackets
●​ Represented by "n"

condProb() Probability given a condition

split() Divides the data into groups defined by variables specified

map(summary) Command summary is applied to each group

set.seed() Indicates to return the same sample in randomization

write_csv(input,
"output")

Create a copy and make a data set out of it

, Separates one variable from the other

== Equality

<- Define a new variable or new data set

%>% Pipe
●​ Sequence of operations/actions

FALSE 0

TRUE 1

| Used to connect two conditions (e.g. connect 2 conditions in a filter)

!= "not equal"

●​ <dbl>: For variables that take numeric values.
●​ <chr>: Variables which are text-based.
●​ <date>: Date-based variables.

14

	1.0 Load and Read Data
	2.0 Basic Commands
	3.0 Create New Variables
	3.1 Focus on Specific Observations
	3.1.1 To view the store that generated the largest loss (negative gross profit).

	4.0 All Code from Chapter 6
	5.0 Summarize() Explanation:
	6.0 Mutate() Explanation
	​6.1 Example of Summary() and Mutate()

	7.0 Descriptive Statistics
	8.0 Determining Outliers
	8.1 Code for extreme outliers
	​8.2 To Test for Extreme Outliers
	8.2.1 For an “IF” statement that automatically performs the test for extreme outliers and returns the outcome.
	8.2.2 To add a line to include gross profit margin for each store and product type

	9.0 Aggregate Explanation
	10.0 Store and Product Classification Code
	11.0 Store Analysis Code
	11.1 Use the code below:
	11.1.1 To find the two best selling days from Store 2

	12.0 OK Cupid Code Example
	12.1 Data Understanding
	12.2 To find missing values:
	12.3 Focus on certain data
	12.3.1 How many users have not reported income (reported income of -1)
	12.3.2 Create new data set for users that reported income
	12.3.3 To create a boxplot with results
	12.3.4 To determine how many outliers
	12.3.5 Generate summary statistics to understand the income distribution within the outliers:
	12.3.6 Adding binary variable (reportIncome)

	13.0 Formula Sheet

